3,4-Dichloromethylphenidate

From Wikipedia, the free encyclopedia

Jump to: navigation, search
3,4-Dichloromethylphenidate
Dichloromethylphenidate.png
Systematic (IUPAC) name
Methyl (2R)-2-(3,4-dichlorophenyl)-2-[(2R)-piperidin-2-yl]acetate
Clinical data
Routes of
administration
Oral
Legal status
Legal status
Identifiers
CAS Number 1400742-68-8 N (racemic)
1364331-88-3 (R, R absolute stereochemistry)
ATC code none
PubChem CID 44296390
ChemSpider 23104857 YesY
UNII 1MM9174NWD YesY
Chemical data
Formula C14H17Cl2NO2
Molar mass 302.196 g/mol
 NYesY (what is this?)  (verify)

3,4-Dichloromethylphenidate is a stimulant drug related to methylphenidate. Dichloromethylphenidate is a potent psychostimulant that acts as both a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor, meaning it effectively boosts the levels of the norepinephrine and dopamine neurotransmitters in the brain, by binding to, and partially blocking the transporter proteins that normally remove those monoamines from the synaptic cleft

3,4-CTMP, the threo-diastereomer, is approximately seven times more potent than methylphenidate in animal studies, but has weaker reinforcing effects due to its slower onset of action.[1][2][3][4][5] However, H. M. Deutsch's discrimination ratio implies it to be more reinforcing than cocaine.[3]

Legality[edit]

As of October 2015 3,4-CTMP is a controlled substance in China.[6]

3,4-CTMP was banned in the UK as a Temporary Class Drug from April 2015 following its unapproved sale as a designer drug.[7]

Sweden's public health agency suggested to classify 3,4-CTMP as hazardous substance on November 10, 2014.[8]

See also[edit]

References[edit]

  1. ^ Deutsch, H.; Shi, Q.; Gruszecka-Kowalik, E.; Schweri, M. (1996). "Synthesis and pharmacology of potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs". Journal of Medicinal Chemistry 39 (6): 1201–1209. doi:10.1021/jm950697c. PMID 8632426. 
  2. ^ Wayment, HK; Deutsch, H; Schweri, MM; Schenk, JO (1999). "Effects of methylphenidate analogues on phenethylamine substrates for the striatal dopamine transporter: potential as amphetamine antagonists?". Journal of Neurochemistry 72 (3): 1266–74. doi:10.1046/j.1471-4159.1999.0721266.x. PMID 10037500. 
  3. ^ a b Schweri, MM; Deutsch, HM; Massey, AT; Holtzman, SG (2002). "Biochemical and behavioral characterization of novel methylphenidate analogs". The Journal of Pharmacology and Experimental Therapeutics 301 (2): 527–35. doi:10.1124/jpet.301.2.527. PMID 11961053. 
  4. ^ Davies, HM; Hopper, DW; Hansen, T; Liu, Q; Childers, SR (2004). "Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites". Bioorganic & Medicinal Chemistry Letters 14 (7): 1799–802. doi:10.1016/j.bmcl.2003.12.097. PMID 15026075. 
  5. ^ Kim, D.; Deutsch, H.; Ye, X.; Schweri, M. (2007). "Synthesis and pharmacology of site-specific cocaine abuse treatment agents: restricted rotation analogues of methylphenidate". Journal of Medicinal Chemistry 50 (11): 2718–2731. doi:10.1021/jm061354p. PMID 17489581. 
  6. ^ "关于印发《非药用类麻醉药品和精神药品列管办法》的通知" (in Chinese). China Food and Drug Administration. 27 September 2015. Retrieved 1 October 2015. 
  7. ^ Methylphenidate-based NPS: A review of the evidence of use and harm. Advisory Council on the Misuse of Drugs, 31 March 2015
  8. ^ "Cannabinoider föreslås bli klassade som hälsofarlig vara". Retrieved 29 June 2015.