不偏ゲーム

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』

不偏(impartial)ゲームとは、二人零和有限確定完全情報ゲームのうち、各状態でどちらのプレーヤが手を打つにしても、動かす選択肢の集合が常に等しいゲームのことを指す。そうでない二人零和有限確定完全情報ゲームは、非不偏ゲーム(英語: Partisan game)と呼ばれる。ゲームは、二人零和有限確定完全情報ゲームであるため、これ以上の移動が不可能な局面(terminal position)まで進められ、その結果、勝者、敗者が定まる。また、お互いに全ての情報を知り合っていて、偶然性に左右されることがない。

不偏ゲームには、ニム、スプラウト(ゲーム)(英語: Sprouts (game))、クアルト (ボードゲーム)、クラム(ゲーム)(英語: Cram (game))、チョンプ(英語: Chomp)などがある。チェス囲碁は、黒と白でお互いが動かす色が異なるので、不偏ゲームではない。また、ポーカーなどはお互いの手札が分からないので、不偏ゲームではない。

不偏ゲームは、Sprague-Grundyの定理を用いて解析することができて、先にterminal positionに動かしたプレーヤーの勝ちとなる正規型のゲームでは常にニム数(英語: nimber)と等価であることが示されている。

条件[編集]

  • 2人のプレーヤーは、terminal positionに達するまで交互に交代しなければならない。
  • 1人のプレイヤーがterminal positionに達したとき、勝者が決まる。
  • 有限回の操作でterminal positionに達する。
  • 各状態でどちらのプレーヤが手を打つにしても、動かす選択肢の集合が常に等しい。
  • 常にお互い全ての情報を持っていて、偶然性に決して左右されない。

参考文献[編集]

関連項目[編集]