佐藤理論

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』

佐藤理論(さとうりろん)は、佐藤幹夫によるソリトン方程式と解に関する理論である[1]。(京都大学数理解析研究所講究録388 1980[2],; 414, 1981[3])

KP方程式 (en)をはじめとする完全可積分方程式のソリトン解の τ関数は普遍Grassmann多様体上の点で、双線形方程式はPlücker関係式である。

脚注[編集]

  1. ^ Ohta, Y., Satsuma, J., Takahashi, D., & Tokihiro, T. (1988). An elementary introduction to Sato theory. Progress of Theoretical Physics Supplement, 94, 210-241.
  2. ^ 広田氏のBilinear Equationsについて (線型微分方程式の変形理論とアーベル函数論の拡張への新しい視点) 京都大学数理解析研究所 / 琉球大学理学部 佐藤 幹夫 / 毛織 泰子 (SATO,MIKIO / MORI,YASUKO) 京都大学数理解析研究所講究録388, 1980 http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/388.html
  3. ^ 広田氏のBilinear Equationsについて (II) (Non-Linear Waves : Classical Theory and Quantum Theory) 京都大学数理解析研究所 / 琉球大理学部 佐藤 幹夫 / 佐藤 泰子 (SATO,MIKIO / SATO,YASUKO) 京都大学数理解析研究所講究録414, 1981 http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/414.html

関連文献[編集]

  • Li, C. (2015). Sato theory on the -Toda hierarchy and its extension. Chaos, Solitons & Fractals, 76, 10-23.
  • Willox, R., & Satsuma, J. (2004). Sato theory and transformation groups. A unified approach to integrable systems. In Discrete integrable systems (pp. 17-55). Springer, Berlin, Heidelberg.

1990年代[編集]

  • Konopelchenko, B. G., & Oevel, W. (1991). Matrix Sato theory and integrable equations in 2+ 1 dimensions. Nonlinear Evolution Equations and Dynamical Systems, 91, 87-96.
  • Strampp, W., & Oevel, W. (1990). Recursion operators and Hamiltonian structures in Sato's theory. Letters in Mathematical Physics, 20(3), 195-210.

1980年代[編集]

  • Harada, H. (1987). New Subhierarchies of the KP Hierarchy in the Sato Theory. II. Truncation of the KP Hierarchy. Journal of the Physical Society of Japan, 56(11), 3847-3852.
  • Harada, H. (1985). New subhierarchies of the KP hierarchy in the Sato theory. I. Analysis of the Burgers-Hopf hierarchy by the Sato theory. Journal of the Physical Society of Japan, 54(12), 4507-4512.