反復積分に関するコーシーの公式

出典: フリー百科事典『ウィキペディア(Wikipedia)』

移動先: 案内検索

フランス数学者コーシーの名にちなむ反復積分に関するコーシーの公式: Cauchy formula for repeated integration)は、n回の不定積分を一度の積分にまとめる公式である。

実数の場合[編集]

f を実軸上の連続関数とする。このとき、aを基点とするfn回繰り返し積分

f^{(-n)}(x) = \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_{n-1}} f(\sigma_{n}) \, \mathrm{d}\sigma_{n} \cdots \, \mathrm{d}\sigma_2 \, \mathrm{d}\sigma_1,

は、次の単一の積分にまとめられる。

f^{(-n)}(x) = \frac{1}{(n-1)!} \int_a^x\left(x-t\right)^{n-1} f(t)\,\mathrm{d}t.

証明は数学的帰納法による。f は連続なので、n=1のときは微分積分学の基本定理より、

\frac{\mathrm{d}}{\mathrm{d}x} f^{(-1)}(x) = \frac{\mathrm{d}}{\mathrm{d}x}\int_a^x f(t)\,\mathrm{d}t = f(x);

ここで、

f^{(-1)}(a) = \int_a^a f(t)\,\mathrm{d}t = 0.

今、nのとき主張が正しいと仮定し、n+1のときも主張が成立することを示そう。帰納法の仮定を適用し、積分の順序を入れ替えて、


\begin{align}
f^{-(n+1)}(x) &= \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_{n}} f(\sigma_{n+1}) \, \mathrm{d}\sigma_{n+1} \cdots \, \mathrm{d}\sigma_2 \, \mathrm{d}\sigma_1 \\
&= \frac{1}{(n-1)!} \int_a^x \int_a^{\sigma_1}\left(\sigma_1-t\right)^{n-1} f(t)\,\mathrm{d}t\,\mathrm{d}\sigma_1 \\
&= \frac{1}{(n-1)!} \int_a^x \int_t^x\left(\sigma_1-t\right)^{n-1} f(t)\,\mathrm{d}\sigma_1\,\mathrm{d}t \\
&= \frac{1}{n!} \int_a^x \left(x-t\right)^n f(t)\,\mathrm{d}t
\end{align}

よって、主張は示された。

応用[編集]

分数階微積分学において、この公式を用いることで、微分または積分を実数回繰り返すことができるので、微積分作用素英語版の概念を構築することができる。実際、実数回だけ積分をするためには、この公式の(n-1)!をΓ(n)と入れ替えれば良い。(ガンマ関数も参照)。

参考文献[編集]

  • Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). ISBN 0-13-065265-2