準同型定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』

移動先: 案内検索

抽象代数学における準同型定理(じゅんどうけいていり、: fundamental theorem on homomorphisms; 準同型の基本定理英語版, fundamental homomorphism theorem)は、与えられた構造をもつ二つの対象の間の準同型が与えられたとき、その準同型のとを関係づける。

準同型定理は同型定理の証明に利用できる。

以下、の場合に定理の主張を述べるが、同様の主張はモノイドベクトル空間加群などについても成立する。

定理の主張[編集]

定理 (群に関する準同型定理)
G, H および群準同型 f: GH が与えられたとき、G正規部分群 K および自然な射影 φ: GG/KG/K剰余群)に対し、K ⊂ ker(f)f)が成り立つならば、群準同型 h: G/KH が存在して f = hφ とできる。

この状況を以下の可換図式

自然射影の普遍性

で表すことができる。これはすなわち自然な射影 φK を単位元に写す G 上の準同型の中でもっとも一般のものであることを言っている。

定理において K = ker(f) と置けばただちに第一同型定理が得られる。

関連項目[編集]

参考文献[編集]