置換積分

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』

置換積分(ちかんせきぶん, 英語: Integration by substitution)は、積分の方法の1つであり、部分積分法に並ぶ微分積分学の基本定理の1つとして主に不定積分に用いられる

一変数の置換[編集]

不定積分の置換積分[編集]

f(x)が積分可能であるときx=g(t)とおくことでf(x)の積分は次のような形に変形させることができる。

インフォーマルな議論では、左辺から右辺への変形に以下のようなニーモニックがよく使われる。

  • 1.x=g(t)の両辺を微分
g′(t)
  • 2.両辺にdtを掛ける
g′(t)dt
  • 3.左辺の式に代入

この変換は式を簡単にするために用いられ左辺から右辺へも、右辺から左辺へも変換が可能である。特に前者をu-変換、後者をw-変換と呼ぶこともある。

定積分の置換積分[編集]

定積分ではx=g(t)と置換した場合においてg(a)=c g(b)=dをみたす組みに区間を変更する必要がある

[編集]

例1[編集]

この式に対して u = φ(x) = x2 + 1, du = 2x dx, x dx = ½du また、下限x = 0u = 0 2+ 1 = 1で置き換えられ、上限x = 2u = 2 2+ 1 = 5で置き換えられるので、

例2[編集]

この例に対してはx = sin(u)と置換することで :

同様の答えは三角関数の公式を用いた方法や部分積分法を用いても出すことができる。また注意すべき点として0→1の範囲で積分することが単位円上の面積の4分の1である。

関連項目[編集]