調和微分形式

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』

調和微分形式とは数学において曲面上の実 1-形式 ω として、ω とその共役 1-形式 ω* 両方が閉形式のことをいう。

解説[編集]

2-次元実解析多様体の上で定義された実 1-形式の場合を考える。さらに複素微分形式の実部となる実 1-形式を考える。 ω = A dx + B dy とし、形式的に 共役 1-形式を ω* = A dy − B dx と定義する。

動機[編集]

調和微分形式は明らかに複素解析に関係している.複素数 z を実部虚部に分けて、それぞれを x と y とし、 z = x + iy とする.複素解析の観点から、 ω + iω* = (A − iB)(dx + i dy) となり、従って dz がゼロに近付くとき (ω + iω*)/dz極限を取る。言い換えると、ω* は、微分(解析性)の概念に関連している。もうひとつの概念である虚数単位は、 (ω*)* = −ω である(まさに i2 = −1 と同じである)。

与えられた函数 f に対し、ω = df とする。つまり

ここに ∂ は偏微分を表す。すると、

となる。ここで注意することは はいつもゼロとは限らないことで、実際、

であり、ここに

が示される。

コーシー・リーマンの方程式[編集]

上で見たように、ω と ω* がともに閉形式のときに、1-形式 ω を 調和的 という。このことは ∂A/∂y = ∂B/∂x (ω が閉形式のとき) でかつ B/∂y = −∂A/∂x (ω* が閉形式のとき) であることを意味する。これらは、A − iBコーシー・リーマンの方程式という。普通、これらは、u(x, y) + iv(x, y) の項で表すと、

となる。

結果[編集]

  • 調和微分 (1-形式) は正確に(解析的)複素微分形式の実部に一致する。[1] これを証明するためには、u + iv が、x + iy局所的に解析函数であるときに、コーシー・リーマンの方程式を満たすことを示せばよい。もちろん、解析函数 w(z) = u + iv は、何らか(すなわち w(z) dz)の局所での微分である。
  • ω が調和微分形式であれば、ω* もまた調和微分形式である。[1]

関連項目[編集]

参考文献[編集]

  1. ^ a b c Cohn, Harvey (1967), Conformal Mapping on Riemann Surfaces, McGraw-Hill Book Company