# 逆三角関数の原始関数の一覧

## 逆正弦関数の積分

${\displaystyle \int \arcsin x\,dx=x\arcsin x+{\sqrt {1-x^{2}}}+C}$
${\displaystyle \int \arcsin ax\,dx=x\arcsin ax+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}$
${\displaystyle \int x\arcsin ax\,dx={\frac {x^{2}\arcsin ax}{2}}-{\frac {\arcsin ax}{4a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}$
${\displaystyle \int x^{2}\arcsin ax\,dx={\frac {x^{3}\arcsin ax}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}$
${\displaystyle \int x^{m}\arcsin ax\,dx={\frac {x^{m+1}\arcsin ax}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\quad (m\neq -1)}$
${\displaystyle \int (\arcsin ax)^{2}\,dx=-2\,x+x\,(\arcsin ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin ax}{a}}+C}$
${\displaystyle \int (\arcsin ax)^{n}\,dx=x\,(\arcsin ax)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\,(\arcsin ax)^{n-1}}{a}}\,-\,n\,(n-1)\int (\arcsin ax)^{n-2}\,dx}$
${\displaystyle \int (\arcsin ax)^{n}\,dx={\frac {x\,(\arcsin ax)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}x^{2}}}\,(\arcsin ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int (\arcsin ax)^{n+2}\,dx\quad (n\neq -1,-2)}$

## 逆余弦関数の積分

${\displaystyle \int \arccos x\,dx=x\arccos x-{\sqrt {1-x^{2}}}+C}$
${\displaystyle \int \arccos ax\,dx=x\arccos ax-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}$
${\displaystyle \int x\arccos ax\,dx={\frac {x^{2}\arccos ax}{2}}-{\frac {\arccos ax}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}$
${\displaystyle \int x^{2}\arccos ax\,dx={\frac {x^{3}\arccos ax}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}$
${\displaystyle \int x^{m}\arccos ax\,dx={\frac {x^{m+1}\arccos ax}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\quad (m\neq -1)}$
${\displaystyle \int (\arccos ax)^{2}\,dx=-2\,x+x\,(\arccos ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos ax}{a}}+C}$
${\displaystyle \int (\arccos ax)^{n}\,dx=x\,(\arccos ax)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\,(\arccos ax)^{n-1}}{a}}\,-\,n\,(n-1)\int (\arccos ax)^{n-2}\,dx}$
${\displaystyle \int (\arccos ax)^{n}\,dx={\frac {x\,(\arccos ax)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}x^{2}}}\,(\arccos ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int (\arccos ax)^{n+2}\,dx\quad (n\neq -1,-2)}$

## 逆正接関数の積分

${\displaystyle \int \arctan x\,dx=x\arctan x-{\frac {\ln(x^{2}+1)}{2}}+C}$
${\displaystyle \int \arctan ax\,dx=x\arctan ax-{\frac {\ln(a^{2}x^{2}+1)}{2\,a}}+C}$
${\displaystyle \int x\arctan ax\,dx={\frac {x^{2}\arctan ax}{2}}+{\frac {\arctan ax}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}$
${\displaystyle \int x^{2}\arctan ax\,dx={\frac {x^{3}\arctan ax}{3}}+{\frac {\ln(a^{2}x^{2}+1)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}$
${\displaystyle \int x^{m}\arctan ax\,dx={\frac {x^{m+1}\arctan ax}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\quad (m\neq -1)}$

## 逆余接関数の積分

${\displaystyle \int \operatorname {arccot} x\,dx=x\operatorname {arccot} x+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}$
${\displaystyle \int \operatorname {arccot} ax\,dx=x\operatorname {arccot} ax+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}$
${\displaystyle \int x\operatorname {arccot} ax\,dx={\frac {x^{2}\operatorname {arccot} ax}{2}}+{\frac {\operatorname {arccot} ax}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}$
${\displaystyle \int x^{2}\operatorname {arccot} ax\,dx={\frac {x^{3}\operatorname {arccot} ax}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}$
${\displaystyle \int x^{m}\operatorname {arccot} ax\,dx={\frac {x^{m+1}\operatorname {arccot} ax}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\quad (m\neq -1)}$

## 逆正割関数の積分

${\displaystyle \int \operatorname {arcsec} x\,dx=x\operatorname {arcsec} x-\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{x^{2}}}}}+C}$
${\displaystyle \int \operatorname {arcsec} ax\,dx=x\operatorname {arcsec} ax-{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}$
${\displaystyle \int x\operatorname {arcsec} ax\,dx={\frac {x^{2}\operatorname {arcsec} ax}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}$
${\displaystyle \int x^{2}\operatorname {arcsec} ax\,dx={\frac {x^{3}\operatorname {arcsec} ax}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}$
${\displaystyle \int x^{m}\operatorname {arcsec} ax\,dx={\frac {x^{m+1}\operatorname {arcsec} ax}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\quad (m\neq -1)}$

## 逆余割関数の積分

${\displaystyle \int \operatorname {arccsc} x\,dx=x\operatorname {arccsc} x\,+\,\ln \left|x+{\sqrt {x^{2}-1}}\right|\,+\,C=x\operatorname {arccsc} x\,+\,\operatorname {arccosh} (x)\,+\,C}$
${\displaystyle \int \operatorname {arccsc} ax\,dx=x\operatorname {arccsc} ax+{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}$
${\displaystyle \int x\operatorname {arccsc} ax\,dx={\frac {x^{2}\operatorname {arccsc} ax}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}$
${\displaystyle \int x^{2}\operatorname {arccsc} ax\,dx={\frac {x^{3}\operatorname {arccsc} ax}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}$
${\displaystyle \int x^{m}\operatorname {arccsc} ax\,dx={\frac {x^{m+1}\operatorname {arccsc} ax}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\quad (m\neq -1)}$