1000

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』
検索に移動
999 1000 1001
素因数分解 23×53
二進法 1111101000
六進法 4344
八進法 1750
十二進法 6B4
十六進法 3E8
二十進法 2A0
ローマ数字 M
漢数字
大字
算木 Counting rod h1.pngCounting rod 0.pngCounting rod 0.pngCounting rod 0.png
「千」の筆順

1000一〇〇〇、せん、ち)は、自然数または整数において、999の次で1001の前の数である。略称として1kと表記される。

性質[編集]

その他 1000 に関すること[編集]

  • SI接頭辞では、1000倍は k(キロ)、1/1000は m(ミリ)である。
  • 1000の接頭辞:milli()、kilo,chili(
  • 1000間を千年紀ミレニアム、millennium)という。ラテン語で1000を表す「mille」と年を表す「annum」が語源。1000年は10世紀、100旬年と言い、英語でそれぞれ“ten centuries”(直訳:十世紀), “hundred decades”(直訳:百旬年)である。
  • 千分率をパーミル(‰)という。
  • 英語で、一万(10000)は“ten thousand”(直訳:十千)で、十万(100000)は“one hundred thousand”(直訳:一百千)である。
  • 現在日本で発行されている日本銀行券(紙幣)の最低額は1000円である(1994年以降)。
  • 慣用表現では、「途方も無く多い」という意味で使われる。例:「海千山千」、「千変万化」、「千載一遇
  • 自動車のナンバープレートの希望番号制で「1000」は抽選対象番号だったが、2001年1月4日に抽選番号から外された。
  • 1000系(1000を形式名に持つ鉄道車両のリスト)
  • 多くのスレッドフロート型掲示板スレッドは1000レス目で書き込めなくなる。
  • ハリセンボンというがいる。名前から針が1000本あると思う人が多いがこれは誤り。実際には400本ほどである。
  • 1000ギニー競馬クラシック競走イギリス発祥だが各国に同名のレースが存在する。
  • 1000番目の素数7919であるため、7919番目に発見された小惑星プライムと名付けられた。
  • 旧約聖書
    • 創世記
      • 「また、サラに言った。「わたしは、銀一千シェケルをあなたの兄上に贈りました。それは、あなたとの間のすべての出来事の疑惑を晴らす証拠です。これであなたの名誉は取り戻されるでしょう。」(創世記 20章 16節)
    • 民数記
      • 「イスラエルの全部族から、部族ごとに人ずつを戦いに送り出しなさい。それで、イスラエルの諸部隊から部族ごとに人ずつ、総計一万二千人の兵が選び出されて武装した。モーセは、部族ごとに人ずつの兵を戦いに送り出し、祭司エルアザルの子ピネハスを、聖なる祭具と出陣に吹くラッパをその手に持たせて、彼らと共に送り出した。」(民数記 31章 4-6節)
      • 「レビ人に与える町の放牧地は、町の城壁から外側に向かって周囲アンマとする。」(民数記 35章 4節)
    • 申命記
      • 「あなたたちの先祖の神、主が約束されたとおり、更に、あなたたちを倍にも増やして祝福されるように。」(申命記 1章 11節)
      • 「あなたは知らねばならない。あなたの神、主が神であり、信頼すべき神であることを。この方は、御自分を愛し、その戒めを守る者には代にわたって契約を守り、慈しみを注がれるが、」(申命記 7章 9節)
      • 「もし、岩なる神が彼らを売らず/主が渡されなかったなら/どうして一人で人を追い/二人で万人を破りえたであろうか。」(申命記 32章 30節)
    • ヨシュア記
      • 「あなたたちは一人で人を追い払える。あなたたちの神、主が約束されたとおり御自らあなたたちのために戦ってくださるからである。」(ヨシュア記 23章 10節)
    • 士師記
      • 「民は皆それぞれ枝を切ると、アビメレクについて行って、それを地下壕の上に積み、そこにいる者を攻めたて、地下壕に火をつけた。ミグダル・シケムの人々、男女合わせて約人が皆、こうして死んだ。」(士師記 9章 49節)
      • 「彼は、真新しいろばのあご骨を見つけ、手を伸ばして取り、これで人を打ち殺した。そこで彼は言った。「ろばのあご骨で、ひと山、ふた山/ろばのあご骨で、人を打ち殺した。」(士師記 15章 15-16節)
      • 「イスラエル全部族から百人につき十人、従って人なら百人、一万人いれば人を選んで糧食を調達させ、部隊をベニヤミンのギブアに行かせ、ベニヤミンがイスラエルの中で行ったすべての非道を制裁しよう。」(士師記 20章 10節)
    • サムエル記上
      • 「イスラエルから三千人をえりすぐった。そのうちの二千人をミクマスとベテルの山地で自らのもとに、他の人をベニヤミンのギブアでヨナタンのもとに置き、残りの民はそれぞれの天幕に帰らせた。」(サムエル記上 13章 2節)
      • 「女たちは楽を奏し、歌い交わした。「サウルはを討ち/ダビデは万を討った。サウルはこれを聞いて激怒し、悔しがって言った。「ダビデには万、わたしには。あとは、王位を与えるだけか。」(サムエル記上 18章 7-8節)
      • 「アキシュの家臣は言った。「この男はかの地の王、ダビデではありませんか。この男についてみんなが踊りながら、『サウルはを討ち、ダビデは万を討った』と歌ったのです。」(サムエル記上 21章 12節)
      • 「一人の男がマオンにいた。仕事場はカルメルにあり、非常に裕福で、羊三千匹、山羊匹を持っていた。彼はカルメルで羊の毛を刈っていた。」(サムエル記上 25章 2節)
      • 「『サウルはを討ち、ダビデは万を討った』と人々が歌い踊ったあのダビデではないか。」(サムエル記上 29章 5節)
    • サムエル記下
      • 「アンモン人は、ダビデの憎しみをかったと悟ると、ベト・レホブおよびツォバのアラム人に人を遣わして歩兵二万を傭兵として要請し、マアカの王には兵一千、トブには兵一万二千を要請した。」(サムエル記下 10章 6節)
      • 「その兵はヨアブに言った。「たとえこの手のひらに銀枚の重みを感じるとしても、王子をこの手にかけたりはしません。王があなたとアビシャイ、イタイに、若者アブサロムを守れ、と命じられたのを我々は耳にしました。」(サムエル記下 18章 12節)
      • 「シムイはベニヤミン族の人を率いていた。サウル家の従者であったツィバは、十五人の息子と二十人の召し使いを率い、ヨルダン川を渡って、王の前に出た。」(サムエル記下 19章 18節)
    • 列王記上
      • 「王はいけにえをささげるためにギブオンへ行った。そこに重要な聖なる高台があったからである。ソロモンはその祭壇に一千頭もの焼き尽くす献げ物をささげた。」(列王記上 3章 4節)
    • 列王記下
      • 「アッシリアの王プルがその地に攻めて来たとき、メナヘムは銀一千キカルをプルに貢いだ。それは彼の助けを得て自分の国を強化するためであった。」(列王記下 15章 19節)
      • 「バビロンの王はすべての軍人七千人、職人と鍛冶人、勇敢な戦士全員を、捕囚としてバビロンに連れて行った。」(列王記下 24章 16節)
    • 歴代誌上
      • 「彼らはガド族に属し、軍隊の頭であったが、その最も弱い者でも百人の敵を相手にし、最も強い者は人を相手とすることができた。」(歴代誌上 12章 15節)
      • 「ナフタリ族からは将軍人と、盾と槍を携える者三万七千人。」(歴代誌上 12章 35節)
      • 「とこしえに主の契約を心に留めよ/代に及ぼすよう命じられた御言葉を」(歴代誌上 16章 15節)
      • 「戦車一千、騎兵七千、歩兵二万を捕獲し、戦車の馬は、百頭を残して、そのほかはすべて腱を切ってしまった。」(歴代誌上 18章 4節)
      • 「アンモン人はダビデの憎しみをかったことを悟った。ハヌンとアンモン人は銀キカルを送って、アラム・ナハライム、アラム・マアカ、ツォバから戦車と騎兵を借り受けようとした。」(歴代誌上 19章 6節)
      • 「その翌日、彼らは主にいけにえをささげ、焼き尽くす献げ物をささげた。雄牛頭、雄羊匹、小羊匹、それにぶどう酒の献げ物もささげ、全イスラエルのために多くのいけにえをささげた。」(歴代誌上 29章 21節)
    • 歴代誌下
      • 「そこで臨在の幕屋にいます主の御前にある青銅の祭壇に上り、その上で焼き尽くす献げ物一千頭をささげた。」(歴代誌下 1章 6節)
      • 「ユダの王ヒゼキヤは雄牛頭、羊七千匹を会衆に提供し、高官たちも雄牛頭、羊一万匹を会衆に提供した。そこで多くの祭司が自分を聖別することになった。」(歴代誌下 30章 24節)
    • エズラ記
      • 「その数は次のとおりであった。金の容器三十、銀の容器一千、小刀二十九、」(エズラ記 1章 9節)
      • 「金杯三十、二級品の銀杯四百十、その他の祭具一千、」(エズラ記 1章 10節)
      • 「金杯二十個一千ダリク、良質の輝く青銅の器二個、これは金に等しい貴重品であった。」(エズラ記 8章 27節)
    • ネヘミヤ記
      • 「谷の門を補強したのはハヌン、それにザノアの住民である。彼らはそれを築き上げ、扉と金具とかんぬきを付けた。それに糞の門までアンマにわたって城壁を補強した。」(ネヘミヤ記 3章 13節)
      • 「家長の何人かは、工事のために寄付をした。総督は、会計に金一千ドラクメ、供え物用の器五十個、祭司の衣服五百三十着を差し出した。」(ネヘミヤ記 7章 69節)
    • ヨブ記
      • 「神と論争することを望んだとしても/に一つの答えも得られないだろう。」(ヨブ記 9章 3節)
      • 人に一人でもこの人のために執り成し/その正しさを示すために/遣わされる御使いがあり」(ヨブ記 33章 23節)
      • 「主はその後のヨブを以前にも増して祝福された。ヨブは、羊一万四千匹、らくだ六千頭、牛一千くびき、雌ろば一千頭を持つことになった。」(ヨブ記 42章 12節)
    • 詩編
      • 「あなたの庭で過ごす一日は日にまさる恵みです。主に逆らう者の天幕で長らえるよりは/わたしの神の家の門口に立っているのを選びます。」(詩編 84編 11節)
      • 年といえども御目には/昨日が今日へと移る夜の一時にすぎません。」(詩編 90編 4節)
      • 「あなたの傍らに一千の人/あなたの右に一万の人が倒れるときすら/あなたを襲うことはない。」(詩編 91編 7節)
      • 「主はとこしえに契約を御心に留められる/代に及ぼすように命じられた御言葉を」(詩編 105編 8節)
    • コヘレトの言葉
      • 「たとえ、年の長寿を二度繰り返したとしても、幸福でなかったなら、何になろう。すべてのものは同じひとつの所に行くのだから。」(コヘレトの言葉 6章 6節)
      • 「わたしの魂はなお尋ね求めて見いださなかった。人に一人という男はいたが/人に一人として、良い女は見いださなかった。」(コヘレトの言葉 7章 28節)
    • 雅歌
      • 「首はみごとに積み上げられたダビデの塔。の盾、勇士の小盾が掛けられている。」(雅歌 4章 4節)
      • 「ソロモンはぶどう畑を/バアル・ハモンに持っていて/ぶどうの世話を番人たちに任せました。番人たちはそれぞれの/ぶどうに代えて銀一千を納めます。これがわたしのぶどう畑、ソロモン様。銀一千はあなたの取り分。銀二百は世話をした番人へ。」(雅歌 8章 11-12節)
    • イザヤ書
      • 「その日が来れば/ぶどうの木を株も育てうるところ/銀一千シェケルに値するところもすべて/茨とおどろに覆われる。」(イザヤ書 7章 23節)
      • 「一人の威嚇によって、人はもろともに逃れ/五人の威嚇によって、お前たちは逃れる。残る者があっても、山頂の旗竿のように/丘の上の旗のようになる。」(イザヤ書 30章 17節)
      • 「最も小さいものも人となり/最も弱いものも強大な国となる。主なるわたしは、時が来れば速やかに行う。」(イザヤ書 60章 22節)
    • エゼキエル書
      • 「その人は、手に測り縄を持って東の方に出て行き、一千アンマを測り、わたしに水の中を渡らせると、水はくるぶしまであった。更に一千アンマを測って、わたしに水を渡らせると、水は膝に達した。更に、一千アンマを測って、わたしに水を渡らせると、水は腰に達した。更に彼が一千アンマを測ると、もはや渡ることのできない川になり、水は増えて、泳がなければ渡ることのできない川になった。」(エゼキエル書 47章 3-5節)
    • ダニエル書
      • 「ベルシャツァル王は人の貴族を招いて大宴会を開き、みんなで酒を飲んでいた。」(ダニエル書 5章 1節)
    • アモス書
      • 「まことに、主なる神はこう言われる。「イスラエルの家では/人の兵を出した町に、生き残るのは百人/百人の兵を出した町に、生き残るのは十人。」(アモス書 5章 3節)
    (ここにあげた"千"以外に"千人隊"(24個)、"幾千"(12個)、"千よろず"(1個)がある。)
  • 新約聖書
    • ペトロの手紙二
      • 「愛する人たち、このことだけは忘れないでほしい。主のもとでは、一日は年のようで、年は一日のようです。」(ペトロの手紙二 3章 8節)
    • ヨハネの黙示録
      • 「また、わたしは見た。そして、玉座と生き物と長老たちとの周りに、多くの天使の声を聞いた。その数は万の数万倍、の数倍であった。」(ヨハネの黙示録 5章 11節)
      • 「この天使は、悪魔でもサタンでもある、年を経たあの蛇、つまり竜を取り押さえ、年の間縛っておき、底なしの淵に投げ入れ、鍵をかけ、その上に封印を施して、年が終わるまで、もうそれ以上、諸国の民を惑わさないようにした。その後で、竜はしばらくの間、解放されるはずである。わたしはまた、多くの座を見た。その上には座っている者たちがおり、彼らには裁くことが許されていた。わたしはまた、イエスの証しと神の言葉のために、首をはねられた者たちの魂を見た。この者たちは、あの獣もその像も拝まず、額や手に獣の刻印を受けなかった。彼らは生き返って、キリストと共に年の間統治した。その他の死者は、年たつまで生き返らなかった。これが第一の復活である。第一の復活にあずかる者は、幸いな者、聖なる者である。この者たちに対して、第二の死は何の力もない。彼らは神とキリストの祭司となって、年の間キリストと共に統治する。この年が終わると、サタンはその牢から解放され、」(ヨハネの黙示録 20章 2-7節)
    (ここにあげた"千"以外に"千人隊"(27個)がある。)

1001 から 1999 までの数[編集]

1001 から 1100 までの数[編集]


1101 から 1200 までの数[編集]


1201 から 1300 までの数[編集]


  • 1201 - スーパー素数、中心つき四角数、エマープ(1201 ←→ 1021)、七進数や四十九進数、そして2401進数における独自周期素数英語版
  • 1202 = 192 + 202 + 212
  • 1210 = 113 − 112 、2つの友愛数 (1184, 1210) の後者
  • 1215 = 35 × 5 = 64 − 34 = 65 − 38
  • 1216 = 26 × 19、九角数
  • 1217 - スーパー素数。
  • 1221 = 3 × 11 × 37 = 33 × 37 = 11 × 111回文数六進法では 5353(6) で上二桁と下二桁の列が同じになる。
  • 1223 - ソフィー・ジェルマン素数
  • 1224 = 33 + 53 + 73 + 93 、4連続奇数立方和で表せる数、1つ前は完全数496
  • 1225 = 352 、三角数、3番目の平方三角数、六角数、中心つき八角数
  • 1229, - 1231と組で42番目の双子素数、ソフィー・ジェルマン素数、エマープ(1229 ←→ 9221)、π(10000) = 1229 (ただしπ(x)は素数計数関数)
  • 1231 - エマープ(1231 ←→ 1321)
  • 1233 = 122 + 332
  • 1234 - レスリー・ファイストの楽曲
  • 1236 - 双子素数の和(617 + 619)
  • 1240 - 四角錐数
  • 1241 - 中心つき立方体数
  • 1242 - 十角数
  • 1247 - 五角数
  • 1250 = 2 × 54 。素因数が 2i × 5j になる数である。1つ前は1000、次は1280
  • 1255 = 251 × 5フリードマン数
  • 1256 = 3.14 × 4 × 100
  • 1259 - の近似値
  • 1260 = 22 × 32 × 5 × 7 = 35 × 36高度合成数矩形数、最小のヴァンパイア数、フリードマン数(21 × 60)、1から10までの数のうち8だけ割り切れない。
  • 1261 = 350 + 351 + 352 、六芒星数
  • 1264 - 最初の27個の素数の合計
  • 1266 - 中心つき五角数
  • 1267 = 7 × 181
  • 1275 - 三角数
  • 1277 - 1279と組で43番目の双子素数
  • 1280 = 28 × 5 。素因数が 2i × 5j になる数である。1つ前は1250、次は1600
  • 1283 - 安全素数、エマープ (1283 ←→ 3821)
  • 1284 - 双子素数の和(641 + 643)
  • 1285 - ノノミノの数、4番目のナイスフリードマン数((1 + 28) × 5)
  • 1288 - 七角数
  • 1289 - 1291と組で44番目の双子素数、ソフィー・ジェルマン素数
  • 1290 - 旧約聖書ダニエル書に1290日という表現がある。
「日ごとの供え物が廃止され、憎むべき荒廃をもたらすものが立てられてから、千二百九十日が定められている。」(ダニエル書 12章 11節)
  • 1295 = 5 × 7 × 37 = 35 × 37 。六進法では 5555 となりゾロ目。1つ前の4444(6)は1036(10)、次の11111(6)は1555(10)
  • 1296 = 64 = 362 = 24 × 34 = 16 × 81二重平方数。最初の8個の立方数の和、8×8 のチェス盤における長方形の総数。6n の1つ前は216、次は7776。素因数が 2i × 3j になる数である。1つ前は1152、次は1458
  • 1297 - スーパー素数
  • 1300 = 22 × 52 × 13 = 4 × 25 × 13

1301 から 1400 までの数[編集]


  • 1301 - 1303と組で45番目の双子素数、中心つき四角数、エマープ(1301 ←→ 1031)
  • 1306 = 11 + 32 + 03 + 64[4]
  • 1307 - 安全素数
  • 1320 - 双子素数の和(659 + 661)
  • 1319 - 1321と組で46番目の双子素数、安全素数
  • 1321 - エマープ(1321 ←→ 1231)
  • 1325 = 202 + 212 + 222マルコフ数
  • 1326 - 三角数、六角数
  • 1327 - 素数のギャップが30を超える最小の素数(1361 - 1327 = 34)
  • 1330 - 三角錐数、ルース=アーロン・ペア (1330, 1331) の前者
  • 1331 = 113、中心つき七角数、ルース=アーロン・ペア (1330, 1331) の後者、回文立方数(∀N>3のN進法によって1331を表記しても、1331は必ず回文立方数になる。これはであるため)
  • 1332 - 矩形数
  • 1333 = 360 + 361 + 362、最小の18-ハイパー完全数
  • 1335 - 五角数、「待ち望んで千三百三十五日に至る者は、まことに幸いである。」(ダニエル書 12章 12節)
  • 1337 - leet を意味する
  • 1343 = 113 + 11 + 1
  • 1344 - 連続してある数に対して約数の和を求めていった場合42個の数が1344になる。1344より小さい数で42個ある数はない。いいかえると を満たす n が42個あるということである。(ただし σ は約数関数)[5]
  • 1350 - 九角数
  • 1361 - 素数のギャップが30を超える最小の素数の組(1361 − 1327 = 34)の中の大きい方
  • 1364 - リュカ数
  • 1365 - 五胞体数
  • 1367 - 安全素数
  • 1369 = 372 、中心つき八角数
  • 1371 - 最初の28個の素数の合計
  • 1378 - 三角数
  • 1379 - 14 × 14 の魔方陣の一列の和
  • 1381 - 中心つき五角数、エマープ(1381 ←→ 1831)
  • 1387 - 超プーレ数英語版、十角数
  • 1395 - ヴァンパイア数(15×93)
  • 1399 - エマープ(1399 ←→ 9931)

1401 から 1500 までの数[編集]


  • 1404 - 七角数
  • 1405 = 262 + 272 = 72 + 82 + ... + 162、26番目の中心つき四角数
  • 1406 - 矩形数
  • 1407 = 370 + 371 + 372 、この形で表すことのできる3番目の楔数である。一つ前は651、次は2163。
  • 1408 - スティーヴン・キングの短編小説
  • 1409 - ソフィー・ジェルマン素数、スーパー素数
  • 1412 - テレビアニメまじっく快斗1412
  • 1419 - ツァイゼル数
  • 1426 - 五角数
  • 1427 - 1429と組で47番目の双子素数
  • 1430 - カタラン数
  • 1431 - 53番目の三角数、六角数
  • 1433 - スーパー素数
  • 1435 - ヴァンパイア数(35×41)
  • 1439 - ソフィー・ジェルマン素数かつ安全素数(9番目)、の数字列からできる最小の素数。(オンライン整数列大辞典の数列 A174277)
  • 1440 - 4(4×360)、高度トーティエント数
  • 1441 - 六芒星数
  • 1444 = 382ローマ数字表記でパンデジタル数であるもののうち最小のもの[6]
  • 1447 - スーパー素数
  • 1451 - 1453と組で48番目の双子素数、ソフィー・ジェルマン素数
  • 1454 = 212 + 222 + 232
  • 1458 = 21 × 36 = 2 × 729
  • 1460 = 4 × 365 と表せるため閏年を含まないときの4年間の日数
  • 1461 - 閏年を含めたときの4年間の日数
  • 1463 = 111 + 112 + 113
  • 1464 = 110 + 111 + 112 + 113
  • 1469 - 八面体数
  • 1470 - 五角錐数
  • 1471 - スーパー素数、中心つき七角数、エマープ(1471 ←→ 1741)、十進法において、スーパー素数同士のエマープとしては最小。
  • 1480 - 最初の29個の素数の合計
  • 1481 - 1483, 1487, 1489と組で6番目の四つ子素数、1483と組で49番目の双子素数、ソフィー・ジェルマン素数
  • 1482 - 矩形数
  • 1483 = 380 + 381 + 382
  • 1485 - 三角数
  • 1487 - 安全素数、1489と組で50番目の双子素数である。
  • 1490 - テトラナッチ数
  • 1491 - 九角数
  • 1496 - 四角錐数
  • 1499 - ソフィー・ジェルマン素数、スーパー素数

1501 から 1600 までの数[編集]


  • 1501 - 中心つき五角数
  • 1511 - ソフィー・ジェルマン素数、エマープ(1511 ←→ 1151)
  • 1512 = 23 × 33 × 71 = 63 × 71 。連続してある数に対して約数の和を求めていった場合、53個の数が1512になる。1512より小さい数で53個ある数はない。いいかえると を満たす n が53個あるということである。(ただし σ は約数関数)
  • 1513 - 中心つき四角数
  • 1520 - 五角数、ルース=アーロン・ペア (1520, 1521) の前者
  • 1521 = 392、中心つき八角数、ルース=アーロン・ペア (1520, 1521) の後者
  • 1523 - 安全素数、スーパー素数
  • 1525 - 七角数
  • 1530 - ヴァンパイア数(30×51)
  • 1536 = 29 × 3 = 512 × 3 。八進法では 3000(8) になる。
  • 1537 - キース数
  • 1540 - 三角数、六角数、十角数、三角錐数
  • 1555 = 60 + 61 + 62 + 63 + 64六進法では11111(6)となり回文数
  • 1556 - 最初の9個の素数の平方の合計
  • 1559 - ソフィー・ジェルマン素数
  • 1560 = 39 × 40矩形数
  • 1561 = 390 + 391 + 392
  • 1564 = 22 × 17 × 23
  • 1568 = 28 × σ(28)
  • 1572 = 123 − 122 − 12
  • 1575 - 奇数の過剰数
  • 1583 - ソフィー・ジェルマン素数
  • 1584 = 123 − 122 = 11 × 122
  • 1585 - の近似値
  • 1589 = 222 + 232 + 242
  • 1593 - 最初の30個の素数の合計
  • 1596 - 三角数
  • 1597 - スーパー素数、フィボナッチ数マルコフ数
  • 1600 = 402 = 26 × 52 = 64 × 25ホワイトハウスの番地(ワシントンDCペンシルベニア通り1600番地)、SATの満点の点数

1601 から 1700 までの数[編集]


  • 1601 - ソフィー・ジェルマン素数、マーク・トウェインの小説『1601』、エマープ(1601 ←→ 1061)
  • 1602 - ハーシャッド数
  • 1607 - 1609と組で51番目の双子素数
  • 1617 - 五角数
  • 1618 - 中心つき七角数
  • 1620 - ハミリング数、ハーシャッド数、双子素数の和(809 + 811)
  • 1619 - 1621と組で52番目の双子素数、安全素数
  • 1621 - スーパー素数
  • 1625 - 中心つき四角数
  • 1626 - 中心つき五角数
  • 1633 - 六芒星数
  • 1634 = 14 + 64 + 34 + 44
  • 1638 - 調和数
  • 1639 - 九角数
  • 1640 - 矩形数
  • 1641 = 400 + 401 + 402
  • 1644 - 双子素数の和(821 + 823
  • 1651 - 七角数
  • 1653 - 三角数、六角数
  • 1656 - 双子素数の和(827 + 829
  • 1667 - 1669と組で53番目の双子素数
  • 1669 - スーパー素数
  • 1676 = 11 + 62 + 73 + 64
  • 1679 = 23 × 73 、 23を基とする最小のハーシャッド数、天文学者カール・セーガンは1974年にアレシボ天文台から1679ビットの「E.T.への手紙」(アレシボ・メッセージ)を発信した。
  • 1680 - 高度合成数
  • 1681 = 412、中心つき八角数、n2 + n + 41 の形で最小の合成数素数生成式参照)
  • 1682 - ルース=アーロン・ペア (1682, 1683) の前者
  • 1683 - ルース=アーロン・ペア (1682, 1683) の後者
  • 1695 - 15 × 15 の魔方陣の一列の和
  • 1697 - 1699と組で54番目の双子素数

1701 から 1800 までの数[編集]


  • 1701 - 35×7、十角数、『スタートレック』に登場するU.S.S.エンタープライズの艦番
  • 1705 - トリボナッチ数
  • 1711 - 三角数
  • 1716 - 双子素数の和(857 + 859)
  • 1717 - 五角数
  • 1720 - 最初の31個の素数の合計
  • 1721 - 1723と組の55番目の双子素数
  • 1722 - 矩形数、ジューガ数
  • 1723 = 410 + 411 + 412 、 スーパー素数
  • 1728 = 123十二進法で1000 、1大グロス
  • 1729 - タクシー数、カーマイケル数、ツァイゼル数、中心つき立方体数
  • 1730 = 232 + 242 + 252
  • 1733 - ソフィー・ジェルマン素数
  • 1741 - スーパー素数、中心つき四角数、エマープ(1741 ←→ 1471)
  • 1756 - 中心つき五角数
  • 1764 = 422、双子素数の和(881 + 883)
  • 1770 - 三角数、六角数、オーストラリアにセブンティーンセブンティ (1770) という名前の町がある
  • 1771 - 三角錐数
  • 1772 - 中心つき七角数
  • 1777 - 下3桁が「777」の素数としては最小
  • 1778 - の近似値
  • 1782 - 七角数
  • 1785 - 四角錐数
  • 1787 - 1789と組の56番目の双子素数、スーパー素数
  • 1794 - 九角数
  • 1800 - 5(5×360)、五角錐数、7以外の1から10までに加えて25(52)で割り切れる最小の数。

1801 から 1900 までの数[編集]


  • 1806 - 矩形数
  • 1807 = 420 + 421 + 422シルベスター数列英語版の第5項
  • 1811 - ソフィー・ジェルマン素数
  • 1820 - 五角数、五胞体数
  • 1823 - 安全素数、スーパー素数
  • 1827 - 5番目のヴァンパイア数(21×87)
  • 1830 - 三角数
  • 1834 - 八面体数、最初の5個の素数の3乗の合計
  • 1836 - 陽子電子質量のおおよその比率
  • 1837 - 六芒星数
  • 1847 - スーパー素数
  • 1849 = 432、中心つき八角数
  • 1851 - 最初の32個の素数の合計
  • 1854 - モンモール数
  • 1861 - 中心つき四角数
  • 1862 - ルース=アーロン・ペア (1862, 1863) の前者
  • 1863 - ルース=アーロン・ペア (1862, 1863) の後者
  • 1865 - 六進法で 12345 となる。
  • 1867 - (p, p + 4, p + 6, p + 10, p + 12)が素数になる3番目の素数 p である。(オンライン整数列大辞典の数列 A022007)
  • 1870 - 十角数
  • 1871 - 1873, 1877, 1879と組で7番目の四つ子素数、1873と組で57番目の双子素数
  • 1877 - 1879と組で58番目の双子素数、1877 = 242 + 252 + 262
  • 1874 - オペラ『ドン・ジョヴァンニ』で、ドン・ジョヴァンニが関係を持った女性の数(従者レポレロの記録によれば)
  • 1884 = 121 + 122 + 123
  • 1885 = 120 + 121 + 122 + 123十二進法で1111、ツァイゼル数
  • 1889 - ソフィー・ジェルマン素数
  • 1891 - 三角数、六角数、中心つき五角数
  • 1892 - 矩形数
  • 1893 = 430 + 431 + 432
  • 1898 - 26を基とする最小のハーシャッド数

1901 から 1999 までの数[編集]


  • 1901 - ソフィー・ジェルマン素数、エマープ(1901 ←→ 1091)
  • 1907 - 安全素数
  • 1909 - 2番目の18-ハイパー完全数
  • 1913 - スーパー素数
  • 1918 - 七角数
  • 1920 = 27 × 3 × 5 = 64 × 30 、連続してある数に対して約数の和を求めていった場合56個の数が1920になる。1920より小さい数で56個ある数はない。いいかえると を満たす n が56個あるということである。(ただし σ は約数関数)
  • 1926 - 五角数
  • 1931 - 1933と組で59番目の双子素数、ソフィー・ジェルマン素数
  • 1933 - 中心つき七角数
  • 1936 = 442
  • 1943 - 三角数、六角数
  • 1944 = 23 × 35
  • 1949 - 1951と組で60番目の双子素数
  • 1953 - 三角数
  • 1956 - 九角数
  • 1960 = 23 × 5 × 72
  • 1973 - ソフィー・ジェルマン素数
  • 1980 = 22 × 32 × 5 × 11 = 44 × 45矩形数
  • 1981 = 440 + 441 + 442
  • 1984 - 26 × 31二進法で 11111000000 となる。
  • 1985 - 中心つき四角数
  • 1987 - 300番目の素数
  • 1988 - 最初の33個の素数の合計
  • 1989 = 32 × 13 × 17
  • 1995 = 3 × 5 × 7 × 19 、103.30の近似値
  • 1997 - 1999と組で61番目の双子素数
  • 1998 - 27を基とする2番目のハーシャッド数
  • 1999 - 十進法で下三桁が999の素数としては最小であり、逆数の循環節の長さも999桁。六進法では13131(6)回文数

脚注[編集]

[脚注の使い方]
  1. ^ a b なお、∀N>3のN進法によって1331を表記しても、1331は必ず立方数になる。これはであるため。
  2. ^ “片手だけで数字を31まで数える方法”. GIGAZINE. (2008年5月12日). http://gigazine.net/news/20080512_count_to_31_on_one_hand/ 2015年9月27日閲覧。 
  3. ^ オンライン整数列大辞典の数列 A002804
  4. ^ オンライン整数列大辞典の数列 A032799
  5. ^ オンライン整数列大辞典の数列 A241954
  6. ^ A105417

関連項目[編集]

1001 から 1999 までの整数
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999