K関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数学において、K関数とは、ハイパー階乗(hyperfactorial)の複素数への一般化である。

定義[編集]

形式的には、K関数は

のように定義される。これは、閉じた式としても表せ、

となる。ここで、ζ'(z)はリーマンゼータ関数の一階導関数、ζ(a,z)はフルヴィッツのゼータ関数で、

である。また、ポリガンマ関数を用いた別の式もある。[1]

である。また、Balanced polygamma functionを使って、[2]

とも書ける。ここで A はグレーシャーの定数である。

K関数はガンマ関数のときと同様に、スターリングの公式の類似公式を持つ。

K関数はガンマ関数バーンズのG関数と密接な関連を持つ。正の実数nに対し、

のような関連がある。より明確に書けば、

が自然数nに対し成り立つということである。

数値[編集]

最初の数項の値は、

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (オンライン整数列大辞典の数列 A002109).

となる。また、は、

[3]

のように表せる。ここで A はグレーシャーの定数である。

関係式[編集]

K関数とバーンズのG関数との積は次のようにかける。

ここで、

Benoit Cloitreは2003年、下の式を発表した。

.

参考文献[編集]

注釈[編集]

関連項目[編集]