MOSダイオード

出典: フリー百科事典『ウィキペディア(Wikipedia)』

出典: フリー百科事典『ウィキペディア(Wikipedia)』
p型シリコン上のMOS構造。上から順に金属電極(黒)、酸化物層(白)、反転層(青)、空乏層(ピンク)、p型シリコン(赤)、金属電極(黒)。

MOSダイオードは、MOS(Metal-Oxide-Semiconductor、金属-酸化物-半導体)構造をもつダイオードである。MOSキャパシタとも呼ばれる。

P型またはN型シリコンウェハの表面を酸化して絶縁酸化膜(SiO2)を作り、その上に金属ゲート(金属や高濃度にドーピングされたシリコン)を付けた構造をもつ。

MOSキャパシタは、ランダムアクセスメモリ(RAM)やCCDイメージセンサに用いられる。

エネルギーバンド図[編集]

p型シリコンMOSキャパシタのエネルギーバンドを考える。熱平衡状態にあるMOSキャパシタでは、金属ゲートと半導体との仕事関数が異なるため、酸化物と半導体表面のバンドが曲がる。その結果フェルミ準位が価電子帯から離れるため空乏層が形成する。

p型MOSキャパシタに負のゲート電圧をかけると、バンドが平らになる電圧が存在する。このときの電圧フラットバンド電圧と呼ぶ。さらに負の方向へ電圧をかけると、バンドが曲がることによってフェルミ準位が価電子帯に近づき、半導体表面では正孔が溜まる。これを蓄積と呼ぶ。

MOSキャパシタに正の方向へ電圧を加えると、バンドが大きく曲がることでフェルミ準位は価電子帯からさらに遠ざかり、正孔の空乏が進む。またある電圧を超えると、フェルミ準位が伝導帯に近づくことで少数キャリアである電子が半導体表面に誘起される。これを反転と呼び、半導体表面の少数キャリアの層を反転層と呼ぶ。反転が始まる電圧しきい値電圧と呼ぶ。

容量-電圧特性[編集]

酸化物厚さを変化させた時のp型シリコン上のMOSキャパシタのC-V特性。青は与えた交流電圧が高周波の場合、赤は低周波の場合。

右図にp型シリコンMOSキャパシタの容量とゲート電圧の関係(C-V特性)を示す。

ゲート電圧が負の方向に大きい場合(図の左側)、p型シリコンから酸化膜に向かう電場が生じる。その電場によってp型シリコンの多数キャリアである正孔は酸化膜/p型シリコン界面に溜まった状態となる(蓄積)。ゲート電圧に比例して界面の正孔濃度が変化するため、容量は酸化膜の容量となる。

ゲート電圧が負の値から正の方向へ大きくなると、MOS構造内の電場がゼロとなるゲート電圧(フラットバンド電圧)が存在する。

ゲート電圧がフラットバンド電圧よりも正の方向へ大きくなると(図の中央)、酸化膜からp型シリコンへ向かう電場が生じる。その電場によって、正孔は酸化膜/p型シリコン界面から遠ざけられ、界面の正孔が不足する(空乏)。全体の容量は酸化膜の容量と空乏層の容量との直列になるため、容量は低下する。

さらにゲート電圧が正の方向に大きくなると(図の右側)、酸化膜/p型シリコン界面に少数キャリアである電子が急激に蓄積する(反転)。容量は酸化膜の容量となる。また空乏層中で電子と正孔が生成するのに時間がかかるため、高周波の交流電圧を与えた場合(青色)は電圧の変化に電子と正孔の生成が追い付かないため、反転が起きない。

ダイオード接続MOS[編集]

ダイオード接続MOS

エンハンスメントモードのNチャネルMOSFETのドレインとゲートを短絡した「ダイオード接続MOS」のことMOSダイオードと呼ぶこともある。 ダイオード接続MOSは、ノーマリーオフ(エンハンスメントモード)のNチャネルMOSFETのドレインとゲートを短絡したもので、一般のダイオードに似た単方向性のある2極素子として扱うことができるが、原理上動作電位の制限などがある[1]。Vfが、PN接合ダイオードでは約0.6V・ショットキーバリアダイオードはもっと低いが、ダイオード接続MOSでは使用するFETの VGS(th) によって決まる。

MOS集積回路 (IC) 中ではこの他に、バルクと電極の間のいわゆる寄生ダイオードをPN接合ダイオードとして利用することもある。また、似たようなFETの使い方として、ノーマリーオン(depletionモード)のNチャネル接合型FET (JFET) のソースとゲートを短絡し、IDSSを利用するいわゆる定電流ダイオードがある。

[編集]

  1. ^ 両極の動作電位が(正の)電源の前後であれば、Pチャネルを使うようにアレンジするなど。